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Problem Statement

Given previous LiDAR frames, we aim to train a neural 

network to predict future ones. 

Method Visualizations

Generic architecture framework. Our framework takes in the past 4 frames and generates motion vectors to predict the next frame. The specific architecture is

determined by which feature extractor is used and whether or not downsampling is used. The refinement module may use any of the previous learned features, as 

indicated by the dashed lines. 

Background

Accuracy and complexity of methods. The table shows the average CD and EMD across the first 5 future frames, 

as well as the size, runtime, and memory usage of the models.

Visualizations. Error visualizations for (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ 

DS, (d) PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity on t + 5. For each 

method, the middle picture shows the ground truth in green and the prediction in 

red; the left picture zooms in on a region of interest in the middle picture; the right 

picture shows the error between the prediction and the ground truth. 

Architecture classification. Primary architectural differences between 

our proposed architectures and FlowNet3D.

Scene flow visualization. Predicted motion vectors for (a) FN3DOOB, (b) PN++ 

w/ DS, (c) EC w/ DS, (d) FN3DA, (e) PN++ w/o DS, (f) EC w/o DS. 

Motivation

• Prediction is an essential task for autonomous driving

• Cars need to predict future states to avoid collisions

• Useful for reinforcement learning approaches

• Newly released autonomous driving datasets like nuScenes [1] have 

rich temporal LiDAR data. 

Conclusion

Downsampling

•Pros

• Reduces computational complexity

• Encourages hierarchical feature learning

•Cons

• Reduces feature content; need more features at 

bottleneck to resolve ambiguity during 

upsampling

• Similar operations, but EdgeConv groups points 

dynamically in feature space

• EdgeConv achieves higher classification and 

segmentation accuracy

Architecture Modulation

We modulate the architecture framework in two ways: 

1. Choice of feature extractor

2. Downsampling or not downsampling

Related Work

• Deep learning on point sets: PointNet [2], PointNet++ [3], 

EdgeConv [4]

• Advances in temporal point cloud processing: FlowNet3D [5]
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Loss Functions

Chamfer Distance Earth Mover’s Distance

Quantitative Results

Observations

• Downsampling models are ~2x faster but need to be ~4x larger than their non 

downsampling counterparts

• PointNet++ w/ Downsampling has the best accuracy and fast runtime. 

• EdgeConv w/o Downsampling has strong accuracy and a smaller model. 

In this scene, the ego vehicle is driving past a truck parked next to a 

line of v-shaped columns. In the magnified region, the truck is in the 

top right, and the columns are along the left side.

Baselines

𝑥𝑡+1
∗ indicates prediction, 𝑥𝑡 indicates 

point cloud at time t

Identity: 

𝑥𝑡+1
∗ = 𝑥𝑡

FlowNet3D Out of the Box 

(FN3DOOB): 

𝑥𝑡+1
∗ = 𝑥𝑡 − 𝐹𝑙𝑜𝑤𝑁𝑒𝑡3𝐷(𝑥𝑡 , 𝑥𝑡−1)

FN3D Adjusted (FN3DA): retrain the 

FlowNet3D architecture using our loss 

functions.

We design an architecture framework that accurately predicts future 

point clouds and scene flow in a self-supervised fashion. We found 

PN++ w/ DS and EC w/o DS to be the most viable architectures. 

Overview

Architecture details. r = ball query radius, k = k for KNN grouping, SR = sampling rate, SS = 

sampling space, feat and flow refer to the output of the corresponding layer.

• We propose a class of neural network architectures for prediction

• Architectures are inspired by FlowNet3D

• Model can be applied autoregressively to predict frames in the more 

distant future

• Use similarity between predicted point cloud and ground truth as 

loss function

• Ground truth is simply the next frame, so training is self-supervised

• Train and evaluate on nuScenes dataset

PointNet++ [3] vs EdgeConv [4]

𝑝: point, 𝑓: feature, ℎ𝜃: multilayer perceptron, 𝑟: radius, 𝑓𝑖
𝑘: kth 

nearest neighbor of 𝑓𝑖 in feature space

Observations: PN++ w/ DS and EC w/o DS produce smooth, accurate 

scene flow compared to the other methods. 

Observations: PN++ w/ DS and EC w/o DS accurately capture the 

motion of the truck and pillars, shown in the zoomed in region. They

exhibit close to 0 error, indicated by their purple error visualizations. 


